Probing Models of Extended Gravity using Gravity Probe B and LARES experiments

Antonio Stabile
astabile@unisa.it
in collaboration with S. Capozziello, G. Lambiase, M. Sakellariadou, A. Stabile

Department of Physics E. R. Caianiello
University of Salerno

Fisciano, 15 December 2014
Abstract

We consider models of Extended Gravity and in particular, generic models containing scalar-tensor and higher-order curvature terms, as well as a model derived from noncommutative spectral geometry. Studying, in the weak-field approximation (the Newtonian and Post-Newtonian limit of the theory), the geodesic and Lense-Thirring processions, we impose constraints on the free parameters of such models by using the recent experimental results of the Gravity Probe B and LARES satellites.
Probing Models of Extended Gravity

An. Stabile

STFOG
Frameworks
Newtonian limit
The Post-Newtonian limit
Orbital Parameters
Experimental constraints: Gravity Prob B and LARES
Noncommutative Spectral Geometry model (NCSG)
Conclusions

References


Scalar Tensor Fourth Order Gravity (STFOG)

The action

\[ \mathcal{A} = \int d^4x \sqrt{-g} \left[ f(R, R_{\alpha\beta}R^{\alpha\beta}, \phi) + \omega(\phi)\phi,_{\alpha}\phi^{;\alpha} + \chi \mathcal{L}_{\text{matter}} \right] \]

- \( R \rightarrow \text{Ricci scalar} \)
- \( R_{\alpha\beta}R^{\alpha\beta} = Y \rightarrow \text{Ricci tensor square} \)
- \( \phi \rightarrow \text{scalar field} \)
- \( \mathcal{L}_{\text{matter}} \rightarrow \text{minimally coupled ordinary matter} \)
- \( g \rightarrow \text{determinant of metric tensor } g_{\mu\nu} \)
- \( \chi = 8\pi G/c^4 \) but we use \( c = 1 \)
- \( R_{\mu\nu} = R^\sigma_{\mu\sigma\nu}, R^\alpha_{\beta\mu\nu} = \Gamma^\alpha_{\beta\nu,\mu} + \ldots \rightarrow \text{convention} \)
- \( 2\Gamma^\mu_{\alpha\beta} = g^{\mu\sigma}(g_{\alpha\sigma,\beta} + g_{\beta\sigma,\alpha} - g_{\alpha\beta,\sigma}) \)
- \((+---) \rightarrow \text{the adopted signature} \)
The field equations by applying $\delta(\cdot) \rightarrow \delta g_{\mu\nu} \frac{\delta(\cdot)}{\delta g_{\mu\nu}} + \delta \phi \frac{\delta(\cdot)}{\delta \phi}$

$$f_R R_{\mu\nu} - \frac{f + \omega(\phi) \phi;\alpha \phi;\alpha}{2} g_{\mu\nu} - f_{R;\mu\nu} + g_{\mu\nu} \Box f_R + 2 f_Y R_\mu^\alpha R^\alpha_{\nu} - 2 [f_Y R^\alpha_{(\mu};\nu)_{\alpha}$$

$$+ \Box [f_Y R_{\mu\nu}] + [f_Y R_\alpha^\beta] ;\alpha^\beta g_{\mu\nu} + \omega(\phi) \phi;\mu \phi;\nu = \chi T_{\mu\nu}$$

$$2 \omega(\phi) \Box \phi + \omega(\phi) \phi;\alpha \phi;\alpha - f_\phi = 0$$

$$f_R R + 2 f_Y R_\alpha^\beta R^{\alpha^\beta} - 2 f + \Box [3 f_R + f_Y R] + 2 [f_Y R^{\alpha^\beta}, \alpha^\beta - \omega(\phi) \phi;\alpha \phi;\alpha = \chi T$$

- $T_{\mu\nu} = - \frac{1}{\sqrt{-g}} \frac{\delta(\sqrt{-g} L_m)}{\delta g^\mu_\nu} \rightarrow$ the tensor of matter
- $T = T^\rho_\rho \rightarrow$ trace of matter tensor
- $f_R = \frac{df}{dR}$, $f_Y = \frac{df}{dY}$, $\omega_\phi = \frac{d\omega}{d\phi}$, $f_\phi = \frac{df}{d\phi}$, $\Box = \sigma ;\sigma$

The scalar field $\phi$ is coupled with the geometry $R$, $R_{\mu\nu}$ (as the classical scalar tensor gravity) and the field equations are differential equations of fourth order.
The first two interesting frameworks are Newtonian and Post-Newtonian limit. The weak field limit is given by:

\[
\begin{align*}
g_{\mu\nu} &\sim \eta_{\mu\nu} + h_{\mu\nu}(x) \\
\phi &\sim \phi^{(0)} + \phi^{(2)}(t, x) \\
\mu &\sim \partial_{\mu} \square \sim \square \eta
\end{align*}
\]

- \( x = (t, x) \)
- The approximation level is driven by an expansion of the powers of \( 1/c \)
- The approximation level is driven by the linearization of field equations \( \mathcal{O}(h_{\mu\nu})^2 \ll 1 \)
- In the Newtonian limit the space time is time independent
By setting \( f_R(0,0,\phi^{(0)}) = 1, \omega(\phi^{(0)}) = 1/2 \) the field equations are

\[
(\triangle - m_Y^2)\triangle \Phi + \left[ \frac{m_Y^2}{2} - \frac{m_R^2+2m_Y^2}{6m_R^2} \triangle \right] R + m_Y^2 f_R (0,0,\phi^{(0)}) \triangle \varphi = -m_Y^2 \mathcal{X} T_{tt}
\]

\[
(\triangle - m_R^2)R - 3m_R^2 f_R (0,0,\phi^{(0)}) \triangle \varphi = m_R^2 \mathcal{X} T
\]

\[
(\triangle - m_\phi^2)\varphi + f_R (0,0,\phi^{(0)}) R = 0
\]

where

\[
\mathcal{g}_{\mu \nu} \sim \begin{pmatrix} 1 + 2\Phi(x) & 0 \\ 0 & -\delta_{ij} \end{pmatrix}
\]

The derivatives are calculated on the Minkowskian background

\[
m_R^2 \doteq -\frac{f_R (0,0,\phi^{(0)})}{3f_{RR} (0,0,\phi^{(0)}) + 2f_Y (0,0,\phi^{(0)})}
\]

\[
m_Y^2 \doteq \frac{f_R (0,0,\phi^{(0)})}{f_Y (0,0,\phi^{(0)})}
\]

\[
m_\phi^2 \doteq -f_{\phi \phi} (0,0,\phi^{(0)})
\]

\( T_{tt} = T = \rho(x) \rightarrow \) the energy mass density of the source

\( T = T^\rho_\rho \rightarrow \) trace of matter tensor

\( \boxed{\text{The theory is parameterized by the coefficients of Taylor expansion of Lagrangian.}} \)
The Newtonian limit of STFOG: the pointlike gravitational potential

The scalar field $\varphi$ and also the Ricci scalar $R$ are auxiliary fields. The physical outcome is

$$\Phi(x) = -\frac{GM}{|x|} \left[ 1 + g(\xi, \eta) e^{-mR\tilde{k}_R|x|} + [1/3 - g(\xi, \eta)] e^{-mR\tilde{k}_\varphi|x|} - \frac{4}{3} e^{-mY|x|} \right]$$

where $g(\xi, \eta) = \frac{1-\eta^2+\xi+\sqrt{\eta^4-(\xi-1)^2-2\eta^2(\xi+1)}}{6\sqrt{\eta^4-(\xi-1)^2-2\eta^2(\xi+1)}}$, $\tilde{k}_R^2 = \frac{1-\xi+\eta^2}{2} \pm \frac{\sqrt{(1-\xi+\eta^2)^2-4\eta^2}}{2}$, $\eta = \frac{m_\varphi}{m_R}$, and $\xi = 3f_R\phi(0, 0, \phi(0))^2$.

The effective Lagrangian of STFOG is given as

$$R + \frac{f_{RR}(0, 0, \phi(0))}{2} R^2 + \frac{f_{\phi\phi}(0, 0, \phi(0))}{2} \varphi^2 + f_{R\phi}(0, 0, \phi(0)) R \phi + f_Y(0, 0, \phi(0)) R_{\alpha\beta} R^{\alpha\beta} + \frac{|\nabla \varphi|^2}{2}$$

... and if we add the terms proportional to $R_{\alpha\beta\gamma\beta} R^{\alpha\beta\gamma\delta}$ and/or to $\Box^k R$. The outcome is the same!!

- The Gauss-Bonnet invariant . . .
- $\Box^k$ is the four divergence . . .
### The Newtonian limit of STFOG: Classes of the gravitational potentials (A, B)

<table>
<thead>
<tr>
<th>Case</th>
<th>Gravitational potential</th>
<th>Free parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$- \frac{GM}{</td>
<td>x</td>
</tr>
</tbody>
</table>
| B    | $- \frac{GM}{|x|} \left[ 1 + \frac{1}{3} e^{-m_R |x|} - \frac{4}{3} e^{-m_Y |x|} \right]$ | $m_R^2 = - \frac{f_R(0,0)}{3f_{RR}(0,0)+2f_Y(0,0)}$  
$m_Y^2 = \frac{f_R(0,0)}{f_Y(0,0)}$ |

- case A $\rightarrow f(R)$
- case B $\rightarrow f(R, R_{\alpha \beta} R^{\alpha \beta})$
- case C $\rightarrow f(R, \phi) + \omega(\phi) \phi;_{\alpha} \phi;^\alpha$
- case D $\rightarrow f(R, R_{\alpha \beta} R^{\alpha \beta}, \phi) + \omega(\phi) \phi;_{\alpha} \phi;^\alpha$
The Newtonian limit of STFOG: Classes of the gravitational potentials (C)

<table>
<thead>
<tr>
<th>Gravitational potential</th>
<th>Free parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-\frac{GM}{</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>( m_\phi^2 = -\frac{f_{\phi \phi}(0, \phi(0))}{2\omega(\phi(0))} )</td>
</tr>
<tr>
<td></td>
<td>( \xi = \frac{3f_{R \phi}(0, \phi(0))^2}{2\omega(\phi(0))} )</td>
</tr>
<tr>
<td></td>
<td>( \eta = \frac{m_\phi}{m_R} )</td>
</tr>
<tr>
<td></td>
<td>( g(\xi, \eta) = \frac{1-\eta^2+\xi+\sqrt{\eta^4+(\xi-1)^2-2\eta^2(\xi+1)}}{6\sqrt{\eta^4+(\xi-1)^2-2\eta^2(\xi+1)}} )</td>
</tr>
<tr>
<td></td>
<td>( \tilde{k}_{R, \phi}^2 = \frac{1-\xi+\eta^2 \pm \sqrt{(1-\xi+\eta^2)^2-4\eta^2}}{2} )</td>
</tr>
</tbody>
</table>
The Newtonian limit of STFOG: Classes of the gravitational potentials (D)

Gravitational potential

\[ - \frac{GM}{|x|} \left[ 1 + g(\xi, \eta) e^{-m_R \tilde{k}_R |x|} + \right. \]

\[ + \left[ \frac{1}{3} - g(\xi, \eta) \right] e^{-m_R \phi |x|} - \frac{4}{3} e^{-m_Y |x|} \]

Free parameters

\[ m_R^2 = -\frac{f_R(0,0,\phi(0))}{3f_{RR}(0,0,\phi(0))+2f_Y(0,0,\phi(0))} \]

\[ m_Y^2 = \frac{f_R(0,0,\phi(0))}{f_Y(0,0,\phi(0))} \]

\[ m_\phi^2 = -\frac{f_{\phi\phi}(0,0,\phi(0))}{2\omega(\phi(0))} \]

\[ \xi = \frac{3f_{R\phi}(0,0,\phi(0))^2}{2\omega(\phi(0))} \]

\[ \eta = \frac{m_\phi}{m_R} \]

\[ g(\xi, \eta) = \]

\[ = \frac{1 - \eta^2 + \xi + \sqrt{\eta^4 + (\xi - 1)^2 - 2\eta^2(\xi + 1)}}{6\sqrt{\eta^4 + (\xi - 1)^2 - 2\eta^2(\xi + 1)}} \]

\[ \tilde{k}_{R,\phi}^2 = \frac{1 - \xi + \eta^2 \pm \sqrt{(1 - \xi + \eta^2)^2 - 4\eta^2}}{2} \]
The Newtonian limit of STFOG: The crucial choice of the coefficient and of the theory!

The potential does not depend only on the masses propagating (cases A, B) but also on the function modeling the Yukawa corrections (case C, D).

![Plot of coefficient $g(\xi, \eta)$ (case C) with respect to quantity $\xi$ for $0 \leq \eta \leq 0.99$ with step 0.33.](image)

\[
g(\xi, \eta) = \frac{1-\eta^2+\xi+\sqrt{\eta^4+(\xi-1)^2-2\eta^2(\xi+1)}}{6\sqrt{\eta^4+(\xi-1)^2-2\eta^2(\xi+1)}},
\]

\[
\tilde{k}_{R,\phi}^2 = \frac{1-\xi+\eta^2\pm\sqrt{(1-\xi+\eta^2)^2-4\eta^2}}{2},
\]

\[
\eta = \frac{m_\phi}{m_R}
\]

\[
\xi = \frac{3f_{R\phi}(0,0,\phi(0))^2}{2\omega(\phi(0))^2}.
\]
In STFOG the Gauss theorem is not verified!

The case of source ball-like is different from the pointlike one: the potential depends on the dimension of the source.

Generally for any term $\propto \frac{e^{-mr}}{r}$ we have a geometric factor multiplying the Yukawa term.

In the case of a ball with radius $\mathcal{R}$ we find

$$F(m\mathcal{R}) = 3 \frac{m\mathcal{R} \cosh m\mathcal{R} - \sinh m\mathcal{R}}{m^3\mathcal{R}^3}$$

$$\Phi_{\text{ball}}(x) = -\frac{GM}{|x|} \left[ 1 + g(\xi, \eta) F(mR\tilde{k}_R\mathcal{R}) e^{-mR\tilde{k}_R|x|} + \left[ 1/3 - g(\xi, \eta) \right] F(mR\tilde{k}_\phi\mathcal{R}) e^{-mR\tilde{k}_\phi|x|} ight.$$ 
$$
- \frac{4}{3} F(mY\mathcal{R}) e^{-mY|x|} \right]$$
The Post-Newtonian limit of STFOG

- Post-Newtonian field equations:

\[
\begin{align*}
\left\{ (\Delta - mY^2)\Delta \Psi - \left[ \frac{mY^2}{2} - \frac{mR^2 + 2mY^2}{6mR^2} \Delta \right] R - mY^2 f_{R\phi}(0, 0, \phi^{(0)}) \Delta \phi \right\} \delta_{ij} \\
+ \left\{ (\Delta - mY^2)(\Psi - \Phi) + \frac{mR^2 - mY^2}{3mR^2} R + mY^2 f_{R\phi}(0, 0, \phi^{(0)}) \Phi \right\} = 0 ,
\end{align*}
\]

\[
\begin{align*}
\left\{ (\Delta - mY^2)\Delta A_i + mY^2 \chi^i \rho v_i \right\} + \left\{ (\Delta - mY^2) \Psi + \frac{mR^2 - mY^2}{3mR^2} R + mY^2 f_{R\phi}(0, 0, \phi^{(0)}) \varphi \right\} , i
\end{align*}
\]

- The solutions for a ball with radius \( R \) are:

\[
\begin{align*}
\Psi_{ball}(x) &= -\frac{GM}{|x|} \left[ 1 - g(\xi, \eta) F(mR\phi R) e^{-mR\phi R |x|} - \frac{2 F(mY R)}{3} e^{-mY |x|} + \right. \\
&\left. - \left[ \frac{1}{3} - g(\xi, \eta) F(mR\phi R) e^{-mR\phi |x|} \right] \right] . \\
A(x) &= \frac{G}{|x|^2} \left[ 1 - (1 + mY |x|) e^{-mY |x|} \right] \hat{x} \times J ,
\end{align*}
\]
The metric is:

\[ g_{tt} = 1 + 2\Phi_{\text{ball}}(x) \]
\[ g_{ti} = 2A_i(x) \]
\[ g_{ij} = -\delta_{ij} + 2\Psi_{\text{ball}}(x)\delta_{ij} \]

The non-vanishing Christoffel symbols are:

\[ \Gamma^t_{ti} = \Gamma^i_{tt} = \partial_i\Phi_{\text{ball}}, \]
\[ \Gamma^i_{tj} = \frac{\partial_iA_j - \partial_jA_i}{2}, \]
\[ \Gamma^i_{jk} = \delta_{jk}\partial_i\Psi_{\text{ball}} - \delta_{ij}\partial_k\Psi_{\text{ball}} - \delta_{ik}\partial_j\Psi_{\text{ball}}. \]
Let us consider the geodesic equations:

\[
\frac{d^2 x^\mu}{ds^2} + \Gamma^\mu_{\alpha\beta} \frac{dx^\alpha}{ds} \frac{dx^\beta}{ds} = 0
\]

We get the accelerations:

\[
\begin{align*}
\ddot{x} + \frac{GM}{r^3} x &= - \frac{G\Lambda(r)}{r^3} x + \frac{2GJ}{r^5} \left\{ \zeta(r) \left[ \left( x^2 + y^2 - 2z^2 \right) \dot{y} + 3yz \dot{z} \right] + 2\Sigma(r)L_x z \right\} \\
\ddot{y} + \frac{GM}{r^3} y &= - \frac{G\Lambda(r)}{r^3} y - \frac{2GJ}{r^5} \left\{ \zeta(r) \left[ \left( x^2 + y^2 - 2z^2 \right) \dot{x} + 3xz \dot{z} \right] - 2\Sigma(r)L_y z \right\} \\
\ddot{z} + \frac{GM}{r^3} z &= - \frac{G\Lambda(r)}{r^3} z + \frac{6GJ}{r^5} \left\{ \zeta(r) + \frac{2}{3} \Sigma(r) \right\} L_z z
\end{align*}
\]

Where \(L_x, L_y\) and \(L_z\) are the components of the angular momentum and...

\[
\Lambda(r) \doteq g(\xi, \eta) F(m_R R_\phi) (1 + m_R R_\phi r) e^{-m_R R_\phi r} - \frac{4}{3} F(m_Y R) (1 + m_Y r) e^{-m_Y r} + \\
\left[ 1/3 - g(\xi, \eta) \right] F(m_R R_\phi) (1 + m_R R_\phi r) e^{-m_R R_\phi r} + \\
\zeta(r) \doteq 1 - [1 + m_Y r + (m_Y r)^2] e^{-m_Y r} \\
\Sigma(r) \doteq (m_Y r)^2 e^{-m_Y r}
\]
Orbital parameters

Is useful to introduce the conventional astronomical notation: \( a \) semimajor axis; \( e \) eccentricity; \( p = a(1 - e^2) \) semilatus rectum; \( i \) inclination; \( \Omega \) longitude of the ascending node \( N \); \( \omega \) longitude of the pericenter \( \Pi \); \( L_0 \), mean longitude of the epoch, i.e. longitude of the satellite at time \( t = 0 \) (also a broken angle, measured from the \( X \) axis); \( \nu \) true anomaly; \( u = \nu + \tilde{\omega} - \Omega \) argument of the latitude; \( n = (GM/a^3)^{1/2} \) mean daily motion; \( C = r^2\dot{\nu} = na^2(1 - e^2)^{1/2} \) twice the areal velocity.
Orbital parameters

- The transformation rules between the coordinates frames \((X, Y, Z)\) and \((S, T, W)\) are

\[
\begin{align*}
x &= r (\cos u \cos \Omega - \sin u \sin \Omega \cos i) \\
y &= r (\cos u \sin \Omega + \sin u \cos \Omega \cos i) \\
z &= r \sin u \sin i \\
r &= \frac{p}{1 + e \cos \nu}
\end{align*}
\]

- The components of the perturbing acceleration in the \((S, T, W)\) system read

\[
\begin{align*}
A_s &= - \frac{G M \Lambda(r)}{r^2} + \frac{2 G J C \cos i}{r^4} \zeta(r) \\
A_t &= - \frac{2 G J C e \cos i \sin \nu}{p r^3} \zeta(r) \\
A_w &= \frac{2 G J C \sin i}{r^4} \left[ \left( \frac{r e \sin \nu \cos u}{p} + 2 \sin u \right) \zeta(r) + 2 \sin u \Sigma(r) \right].
\end{align*}
\]

- The \(A_s\) component has two contributions: the former one results from the modified Newtonian potential \(\Phi_{\text{ball}}(x)\), while the latter one results from the gravito-magnetic field \(A_i\) and it is a higher order term than the first one. Note that the components \(A_t\) and \(A_w\) depend only on the gravito-magnetic field.
The Gauss equations for the variations of the six orbital parameters, resulting from the perturbing acceleration with components $A_x, A_y, A_z$, read:

$$\frac{da}{dt} = \dot{a}_{\text{STFOG}} = \frac{2e GM \Lambda(r) \sin \nu}{n \sqrt{1-e^2}} \dot{\nu} + \dot{e}_{\text{GR}} \left[ 1 - e^{-mYr} \left( 1 + mYr + (mYr)^2 \right) \right]$$

$$\frac{de}{dt} = \dot{e}_{\text{GR}} + \dot{e}_{\text{STFOG}} = \sqrt{1-e^2} \frac{G M \Lambda(r) \sin \nu}{naC} \dot{\nu} + \dot{e}_{\text{GR}} \left[ 1 - e^{-mYr} \left[ 1 + mYr + (1 + f(\nu, u, e))(mYr)^2 \right] \right]$$

$$\frac{d\Omega}{dt} = \dot{\Omega}_{\text{GR}} + \dot{\Omega}_{\text{STFOG}} = \dot{\Omega}_{\text{GR}} \left\{ 1 - e^{-mYr} \left[ 1 + mYr + (1 + f(\nu, u, e))(mYr)^2 \right] \right\}$$

$$\frac{di}{dt} = \dot{i}_{\text{GR}} + \dot{i}_{\text{STFOG}} = \dot{i}_{\text{GR}} \left\{ 1 - e^{-mYr} \left[ 1 + mYr + (1 + f(\nu, u, e))(mYr)^2 \right] \right\}$$

$$\frac{d\tilde{\omega}}{dt} = \dot{\omega}_{\text{GR}} + \dot{\omega}_{\text{STFOG}} = -\sqrt{1-e^2} \frac{G M \Lambda(r) \cos \nu}{naeC} \dot{\nu} + \dot{\omega}_{\text{GR}} \left[ 1 - e^{-mYr} \left( 1 + mYr + (mYr)^2 \right) \right] + 2\sin^2 \frac{i}{2} \dot{\Omega}_{\text{GR}} f(\nu, u, e) \Sigma(r)$$

$$\frac{dM^0}{dt} = \dot{M}^0_{\text{GR}} + \dot{M}^0_{\text{STFOG}} = -\frac{G M \Lambda(r)}{naC} \left[ \frac{2r}{a} + \frac{e \sqrt{1-e^2}}{1+\sqrt{1-e^2}} \cos \nu \right] \dot{\nu} + \dot{M}^0_{\text{GR}} \left[ 1 - e^{-mYr} \left( 1 + mYr + (mYr)^2 \right) \right] - 2\sin^2 \frac{i}{2} \dot{\Omega}_{\text{GR}} f(\nu, u, e) \Sigma(r)$$

where:

$$f(\nu, u, e) = \frac{1 + e \cos \nu}{1 + e \left( \frac{\sin \nu \cot u}{2} + \cos \nu \right)}$$
Gauss equations: secular terms

Considering an almost circular orbit \((e \ll 1)\), we integrate the Gauss equations with respect to the only anomaly \(\nu\), from 0 to \(\nu(t) = nt\), since all other parameters have a slower evolution than \(\nu\), hence they can be considered as constraints with respect to \(\nu\). At first order we get

\[
\Delta a(t) = 0
\]
\[
\Delta e(t) = 0
\]
\[
\Delta i(t) = \frac{G J e^2}{na^3} \sin i e^{-mYP}(mYP)^2 \left[1 + \frac{(mYP)^2}{2} \left(mYP - 4\right)\right] \sin \left(\tilde{\omega}(t) - \Omega(t)\right) \nu(t) + \mathcal{O}(e^4)
\]
\[
\Delta \Omega(t) = \frac{2GJ}{na^3} \left[1 - e^{-mYP} \left(1 + mYP + 2(mYP)^2\right)\right] \nu(t) + \mathcal{O}(e^2)
\]
\[
\Delta \tilde{\omega}(t) = \left\{\frac{\tilde{\Lambda}(p)}{2} - \frac{2GJ}{na^3} \left[3 \cos i - 1 + e^{-mYP} (1 + mYP + \frac{3}{2} (mYP)^2 + 
\right.
\]
\[
\left.-(3 + 3mYP + 3(mYP)^2 + \frac{1}{12} (mYP)^3) \cos i\right]\} \nu(t) + \mathcal{O}(e^2)
\]
\[
\Delta \mathcal{M}(t) = \left\{2\Lambda(p) - \frac{2GJ}{na^3} \left[3 \cos i - 1 - e^{-mYP} \left(1 + mYP + 2(mYP)^2\right) \left(\cos i - 1\right)\right]\} \nu(t) + \mathcal{O}(e^2)
\]

where

\[
\tilde{\Lambda}(p) \equiv g(\xi, \eta) F(mR\tilde{k}_R R)(mR\tilde{k}_R p)^2 e^{-mR\tilde{k}_R p} + [1/3 - g(\xi, \eta)] F(mR\tilde{k}_\phi R)(mR\tilde{k}_\phi p)^2 e^{-mR\tilde{k}_\phi p}
\]
\[
- \frac{4}{3} \frac{F(mY R)}{(mYP)^2} e^{-mYP} .
\]
Gravity Prob B and LARES

- Gravity Prob B: was a relativity gyroscope experiment funded by NASA which launched on 20 April 2004 and completed on 8 December 2010. The mission plans were to test two unverified predictions of general relativity: the geodetic effect and frame-dragging. This was to be accomplished by measuring, very precisely, tiny changes in the direction of spin of four gyroscopes contained in an Earth satellite orbiting at 650 km altitude, crossing directly over the poles.

- LARES: (acronym for Laser Relativity Satellite) is an Italian Space Agency scientific satellite launched on 13 February 2012. The satellite, completely passive, is made of tungsten alloy and houses 92 cube corner retro reflectors that are used to track the satellite via laser from stations on Earth. LARES’s body has a diameter of about 36.4 cm and weighs about 400 Kg. LARES was inserted in an orbit with 1450 Km of perigee, an inclination of 69.5 degrees and reduced eccentricity $\sim 10^{-3}$. The satellite is tracked by the International Laser Ranging Service stations. The main scientific target of the LARES mission is the measurement of the frame-dragging, also known as Lense-Thirring effect, with an accuracy of about 1%.
Experimental constraints

- Geodesic and Lense-Thirring precessions are:

  \[ \Omega_G = \frac{\nabla(\Phi + 2\Psi)}{2} \times v = \Omega_G^{(GR)} + \Omega_G^{(STFOG)}, \quad \Omega_{LT} = \frac{\nabla \times A}{2} = \Omega_{LT}^{(GR)} + \Omega_{LT}^{(STFOG)} \]

- Imposing the constraint \(|\Omega| \lesssim \Omega^{(GR)} + \delta\Omega \Rightarrow |\Omega^{(STFOG)}| \lesssim \delta\Omega\), we get:

  \[ g(\xi, \eta)(m_R\kappa_R r^* + 1) F(m_R\kappa_R R_\oplus) e^{-m_R\kappa_R r^*} + \frac{8}{3}(m_Y r^* + 1) F(m_Y R_\oplus) e^{-m_Y r^*} + \]
  \[ + \left[ \frac{1}{3} - g(\xi, \eta) \right](m_R\kappa_\phi r^* + 1) F(m_R\kappa_\phi R_\oplus) e^{-m_R\kappa_\phi r^*} \lesssim \frac{3 \delta|\Omega_G|}{|\Omega_G^{(GR)}|} \approx 0.008, \]
  \[ (1 + m_Y r^* + m_Y^2 r^*^2) e^{-m_Y r^*} \lesssim \frac{\delta|\Omega_{LT}|}{|\Omega_{LT}^{(GR)}|} \approx 0.19 \Rightarrow m_Y \geq 7.3 \times 10^{-7} m^{-1} \]

- LARES

  \[ (1 + m_Y r^* + m_Y^2 r^*^2) e^{-m_Y r^*} \lesssim \frac{\delta|\Omega_{LT}|}{|\Omega_{LT}^{(GR)}|} \approx 0.01 \Rightarrow m_Y \geq 1.2 \times 10^{-6} m^{-1} \]

\[ r^* = R_\oplus + h, \ R_\oplus \ is \ the \ radius \ of \ the \ Earth \ and \ h \ is \ the \ altitude \ of \ the \ satellite \ (h = 650 \ km \ for \ Gravity \ Probe \ B, \ while \ h = 1450 \ Km \ for \ LARES). \]
Noncommutative Spectral Geometry model

- Gravitational part of the asymptotic expression for the bosonic sector of the NCSG action:

\[ S^{L}_{\text{grav}} = \int d^4 x \sqrt{-g} \left[ \frac{R}{2\kappa_0^2} + \alpha_0 C_{\alpha\beta\gamma\delta} C^{\alpha\beta\gamma\delta} + \tau_0 R^* R^* - \xi_0 R |H|^2 \right] \]

- \( C_{\alpha\beta\gamma\delta} C^{\alpha\beta\gamma\delta} = 2R_{\alpha\beta} R^{\alpha\beta} - \frac{2}{3} R^2 \).
- \( H = (\sqrt{af_0}/\pi)\phi; \quad \alpha_0 = -3f_0/(10\pi^2); \quad \xi_0 = \frac{1}{12} \).
- \( m_R \rightarrow \infty; \quad m_Y = \sqrt{\frac{5\pi^2 (k_0^2 H(0) - 6)}{36f_0 k_0^2}}; \quad m_\phi = 0; \quad \xi = \frac{af_0(H(0))^2}{12\pi^2}, \quad \eta = 0; \)
- \( g(\xi, \eta) = \frac{af_0(H(0))^2 + 12\pi^2}{6|af_0(H(0))^2 - 12\pi^2|} + \frac{1}{6}; \quad \tilde{k}_{R,\phi} = 1 - \frac{af_0(H(0))^2}{12\pi^2}, \quad 0. \)
- Geodesic effect: \( \frac{8}{3} (m_Y r^* + 1) F(m_Y R_\oplus) e^{-m_Y r^*} \lesssim 0.008 \Rightarrow m_Y \geq 7.1 \times 10^{-5} m^{-1} \)
- But... a more stringent constraint has been obtained using torsion balance experiments, \( m_Y \geq 10^4 m^{-1} \)
In the context of Extended Gravity (STFOG), we have studied the linearized field equations in the limit of weak gravitational fields and small velocities generated by rotating gravitational sources, aiming at constraining the free parameters using recent recent experimental results.

We have shown that the induced Extended Gravity effects depend on the effective masses $m_R$, $m_Y$ and $m_\phi$, while the nonvalidity of the Gauss theorem implies that these effects also depend on the geometric form and size of the rotating source.

Requiring that the corrections are within the experimental errors, we then imposed constraints on the free parameters of the considered Extended Gravity model.

The field $\Phi$ is time-independent. This aspect guarantees that $A_i$ does not depend on the masses $m_R$ and $m_\phi$ and, in the case of $f(R, \phi)$ gravity, the solution is the same as in GR.

Merging the experimental results of Gravity Probe B and LARES, our results can be summarized as follows:

\[
g(\xi, \eta)(m_R k_R r^\ast + 1) F(m_R k_R R_\oplus) e^{-m_R k_R r^\ast} + \frac{8}{3} (m_Y r^\ast + 1) F(m_Y R_\oplus) e^{-m_Y r^\ast} + \\
+ [1/3 - g(\xi, \eta)](m_R k_\phi r^\ast + 1) F(m_R k_\phi R_\oplus) e^{-m_R k_\phi r^\ast} \lesssim 0.008
\]

and

\[
m_Y \geq 1.2 \times 10^{-6} m^{-1}
\]

Thanks for your attention