Semi-analytical approach versus simulations for e-cloud effects in the LHC magnetic dipole

S. Petracca¹,², A. Stabile¹,², W. Di Carmine
petracca@sa.infn.it, arturo.stabile@gmail.com, dcwalter@libero.it

1) Dipartimento di Ingegneria, Università del Sannio, Benevento Italy
2) Istituto Nazionale di Fisica Nucleare, Salerno Italy

International Measurement Confederation
20° IMEKO TC-4 International Symposium
Benevento, Sep 15th, 2014
Outline

1. Electron Cloud in LHC
2. Map Formalism
3. The linear coefficient
4. PyEcloud Outputs
5. Theoretical model for e-cloud distribution
6. Calculation of saturation density and quadratic coefficient
7. Conclusions
The Multipacting Effect

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Quantities</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam pipe radius (circular case)</td>
<td>R_P</td>
<td>m</td>
<td>0.020</td>
</tr>
<tr>
<td>Beam pipe radii (elliptic case)</td>
<td>R_{p1}, R_{p2}</td>
<td>m</td>
<td>0.022, 0.017</td>
</tr>
<tr>
<td>Beam size</td>
<td>σ_r</td>
<td>m</td>
<td>0.002</td>
</tr>
<tr>
<td>Bunch spacing</td>
<td>s_b</td>
<td>m</td>
<td>7.480</td>
</tr>
<tr>
<td>Bunch length</td>
<td>σ_z</td>
<td>m</td>
<td>0.023</td>
</tr>
<tr>
<td>Particles per bunch</td>
<td>N_b</td>
<td>10^{10}</td>
<td>8 ÷ 12</td>
</tr>
<tr>
<td>Magnetic field</td>
<td>B</td>
<td>T</td>
<td>8</td>
</tr>
</tbody>
</table>
Maps Formalism in presence of magnetic field

The bunch to bunch evolution of the e-cloud density can be represented by a cubic map:

\[\lambda_{m+1} = a\lambda_m + b\lambda_m^2 + c\lambda_m^3 \]

Lines correspond to cubic fit:

\[\lambda_{m+1} = a\lambda_m + b\lambda_m^2 + c\lambda_m^3 \]

It is necessary to determine an analytical form for the three coefficients \(a, b \) and \(c \)

\(a \) is related to the build up of the cloud while \(b \) is related to the saturation.

During the saturation, neglecting the term \(c \):

\[\lambda_{m+1} = \lambda_m = \lambda_{sat} \rightarrow b = \frac{1 - a}{\lambda_{sat}} \]
Analytical determination of linear coefficient

The analytical form of a is provided by U. Iriso and S. Peggs (2005)

$$a = \delta_{\text{ref}}(E_g)^k + \delta_{ts}(E_g)\delta_{\text{tot}}(E_0)\xi \times \frac{\delta_{\text{tot}}(E_0)^k\xi - \delta_{\text{ref}}(E_g)^k}{\delta_{\text{tot}}(E_0)^\xi - \delta_{\text{ref}}(E_g)}$$

$$\xi = \sqrt{\frac{E_0}{E_g}}$$

$E_0 \rightarrow$ secondary electron energy

$E_g \rightarrow$ energy gained by the electrons after the passage of the bunch

$$\delta_{\text{max}}(\theta) = \delta_{\text{max}} e^{\frac{1 - \cos \theta}{2}}$$

$$\delta_{ts}(E) = \delta_{\text{max}}\frac{sE/E_{\text{max}}}{s-1+(E/E_{\text{max}})^s}$$

$$\delta_{\text{ref}}(E) = R_0\left(\frac{\sqrt{E} - \sqrt{E+E_0}}{\sqrt{E} + \sqrt{E+E_0}}\right)^2$$

$$\delta_{\text{tot}}(E) = \delta_{ts}(E) + \delta_{\text{ref}}(E)$$

<table>
<thead>
<tr>
<th>Quantities</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ_{max}</td>
<td>/</td>
<td>1.5 ÷ 1.7</td>
</tr>
<tr>
<td>E_{max}</td>
<td>eV</td>
<td>332</td>
</tr>
<tr>
<td>s</td>
<td>/</td>
<td>1.35</td>
</tr>
<tr>
<td>E_0</td>
<td>eV</td>
<td>150</td>
</tr>
<tr>
<td>R_0</td>
<td>/</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Average Cloud Distribution

Average Distribution during saturation

3D Average Distribution during saturation
Theoretical model for e-cloud density distribution

The electrostatic potential \(\nu(r, \phi) \) generated by a negative uniform charged wirelike distribution \((-e \lambda_e)\) satisfying the boundary condition \(\nu(1, \phi) = 0 \) on the chamber wall is given by:

\[
\nu(r, \phi) = -\frac{e \lambda_e}{4\pi \epsilon_0} \ln \frac{r^2 r'^2 - 2rr' \cos(\phi' - \phi) + 1}{r^2 - 2rr' \cos(\phi' - \phi) + r'^2} = -\frac{e \lambda_e}{2\pi \epsilon_0} f(r, \phi, r', \phi')
\]

By the observing of previous outputs we have formulated the following model of distribution:

\[
g(x, y) = \frac{e}{\int_{S'/4} dS'} \frac{(x-x_p)^2}{2\sigma_x^2} e^{-\frac{(x-x_p)^2}{2\sigma_x^2}} \frac{(y-y_p)^2}{2\sigma_y^2} e^{-\frac{(y-y_p)^2}{2\sigma_y^2}}
\]
Energy barrier and saturation condition

The total electrostatic potential considering also the contribution of the bunch is given by:

\[V(r, \phi) = -\frac{e\lambda}{2\pi\epsilon_0} \int_{s'} dS' g'(r', \phi') v(r, \phi) + \frac{e\bar{\lambda}_b}{2\pi\epsilon_0} h_b(r) \]

where \(h_b(r) = \left(\frac{1}{2} - \frac{r^2}{2\bar{\sigma}^2 r} - \ln \bar{\sigma} r \right) \Theta(\bar{\sigma} r - r) - (\ln r) \Theta(r - \bar{\sigma} r) \), \(\Theta \) is the Heaviside function and \(\bar{\sigma} = \frac{\sigma_r}{R_p} \) with \(\sigma_r \) the radius of bunch and \(R_p \) the radius of pipe.

The energy barrier is given by \(-eV(r, \phi)\), then we find:

\[\mathcal{E}(r, \phi) = 2r_e m_e c^2 \left\{ \lambda_e h(r, \phi) - \bar{\lambda}_b h_b(r) \right\} \]

The saturation condition can be obtained by imposing that

\[\mathcal{E}_{\text{max}} = \mathcal{E}(\sqrt{x_p^2 + y_p^2}, \arctan y_p / x_p) \gtrsim \mathcal{E}_0 \]

where \((x_p, y_p)\) is the point of the transverse plane to the bunch corresponding to the maximum of energy barrier.
Results

We obtain the density of saturation as follows:

\[
\lambda_{e}^{sat} = \frac{4 \left[\frac{\varepsilon_0}{m_e c^2} \frac{N_b}{s_b + \sigma_z} \ln \sqrt{x_p^2 + y_p^2} \right]}{\int_{S'/4} dS' g(x', y') f\left(\sqrt{x_p^2 + y_p^2}, \arctan y_p / x_p, x', y' \right)}
\]
Conclusions

- Simple model that doesn't require high computational costs like simulations;
- A theoretical framework for the space charge is missing. Only by the study of the cloud we can obtain the values for model free parameters;
- The model is too simple, since the saturation density doesn't depend on the SEY, while the values obtained by simulations are SEY depending.
REFERENCES

5. T. Demma, S. Petracca, A. Stabile - Proceedings of IPAC 2010;
6. T. Demma, S. Petracca, A. Stabile - Proceedings of RiNEm 2010;
7. G. Iadarola, G. Rumolo - PyECLoud and build-up simulation at CERN - Proceedings of ECloud12